Programmable Loads

Learning Modules

EV Drive Line Simulator with Controller Development & Validation Platform

The EV Driveline Simulator with Controller Development & Validation Platform is a complete hardware-integrated environment designed for mastering electric vehicle propulsion systems. It enables students, researchers, and engineers to design, test, and validate motor control algorithms on real PMSM traction motors, interact with a programmable dynamometer, execute drive cycles, and evaluate full charging–discharging workflows. The platform replicates a true EV energy ecosystem—from grid to battery to motor and back—making it ideal for advanced learning, research, and prototype development in electric mobility.

Know More
Learning Module

Battery Cycler with Data Analytics

The Battery Cycler with Data Analytics (BCDA) is a comprehensive educational and experimental platform designed to study and analyze electric vehicle (EV) battery systems. Combining real EV components with open-source software and a built-in environmental chamber, this system provides users with the tools to conduct hands-on experiments, simulate real-world conditions, and perform in-depth data analytics. BCDA is ideal for institutions and research labs aiming to deliver practical skills and foster innovation in battery technology and electric mobility.

Know More
Learning Module

BMS Learn & Build Platform

The BMS Learn & Build Platform is a modular training and research system designed to bridge classroom learning with real-world battery applications. It enables students, researchers, and developers to design, program, and validate Battery Management System (BMS) algorithms on real battery packs, addressing the growing demand for safe and intelligent battery management in electric vehicles and energy storage systems.The platform integrates a BMS development unit, a battery cycler with data analytics, and an environmental chamber for controlled charge–discharge and thermal testing. With LabVIEW-based monitoring and open-source firmware, users can configure experiments, simulate protection events, and analyze battery performance in real time. The system provides a scalable, hands-on environment for learning, algorithm development, and BMS validation.

Know More
Learning Module

Modular and Adaptive EVSE

The Modular and Adaptive Electric Vehicle Supply Equipment (MAEVSE) by Ecosense is a fully integrated educational and research platform that simulates the complete EV charging ecosystem. Designed for universities, polytechnics, and technical institutions, MAEVSE combines real EV hardware with open-source control software, enabling students and researchers to explore every aspect of EV charging technology—from onboard AC charging to off-board DC fast charging—through hands-on experimentation, data analysis, and control algorithm development. This lab-grade platform is engineered to bridge the gap between theoretical knowledge and real-world EV infrastructure.

Know More
Learning Module

Green Hydrogen Generation and Storage System

The Green Hydrogen Generation and Storage System by Ecosense is a modular, reconfigurable educational and research-grade platform that replicates the complete hydrogen value chain—from renewable power harvesting to hydrogen generation and safe storage. Designed for engineering institutions, R&D labs, and clean energy centers, this system serves as a real-world replica of decentralized hydrogen production hubs. It enables comparative experimentation with leading electrolyzer technologies (PEM, AEM, Alkaline) and supports multiple input sources including photovoltaic arrays, PV emulators, and AC grid supply. With the flexibility to switch technologies and test variables under controlled lab conditions, this platform prepares students and researchers to design, operate, and optimize hydrogen infrastructure in alignment with future energy systems.

Know More
Learning Module

Green Hydrogen Generation, Storage and Utilization System

The Green Hydrogen Generation, Storage and Utilization System is a customizable experimental and research platform designed to facilitate the comprehensive study of the entire green hydrogen cycle. It enables users to explore every stage—from renewable energy integration (via Solar PV arrays or PV emulator systems) and water purification, to hydrogen generation using a choice of electrolyzers (PEM, AEM, or Alkaline), followed by safe storage and final utilization through a PEM fuel cell. This system offers a complete hands-on learning environment, making it ideal for academic institutions, research laboratories, and technology training centers focused on advancing hydrogen energy technologies with a strong focus on safety, control, and performance analysis.

Know More
Learning Module

Green Hydrogen Microgrid

The Green Hydrogen Microgrid by Ecosense is a cutting-edge educational and experimental platform designed to demonstrate the generation, storage, and utilization of hydrogen energy integrated within a smart microgrid system. This system enables students and researchers to explore real-time renewable energy integration, green hydrogen production via electrolysis, and electricity generation using fuel cells. It provides a holistic learning experience in advanced energy systems, making it an ideal tool for institutions aiming to lead in hydrogen technology and sustainability.

Know More
Learning Module

Electrolyzer Characterization System

The Electrolyzer Characterization System is a laboratory-grade platform designed for in-depth testing of PEM electrolyzers in green hydrogen generation. It features five stackable cells plus additional variable-area cells, powered by a programmable DC supply for precise I–V characterization. A distilled water system with conductivity sensors and peristaltic pumps ensures controlled water quality and flow, while gas handling units with dryers, separators, and flow meters provide accurate hydrogen and oxygen measurement. Operating conditions such as temperature, pressure, and flow rate can be independently adjusted and monitored via a PC-based control and logging interface. Built-in safety systems—including overpressure shutdowns, leak detectors, and solenoid cut-offs—guarantee secure operation, making the platform ideal for research on efficiency, degradation, and operational optimization of electrolyzers.

Know More
Learning Module

Fuel Cell Characterization System

The Fuel Cell Characterization System is an advanced experimentation and research platform for studying PEM fuel cells. It enables detailed exploration of efficiency, durability, and performance under varied operating conditions. The setup includes five single cells and three additional MEA sizes, allowing comparative analysis and scale-up research. Its stackable architecture links single-cell studies to stack-level applications, bridging the gap between laboratory learning and practical deployment. With PC-enabled control, researchers can regulate temperature, humidity, and gas pressure while receiving real-time feedback. A programmable electronic load supports experiments on dynamic operating conditions and optimization. Integrated humidifiers and gas management systems ensure consistent performance. Built-in safety features such as hydrogen leak detection, automatic purging, and overpressure protection guarantee secure operations. Tailored for universities, training centers, and R&D labs, the system provides a complete, safe, and flexible environment for advancing green hydrogen research and innovation.

Know More
Learning Module

Solar PV Training and Research System

The Solar PV Training and Research System is a compact, hands-on educational platform that replicates a real-world standalone solar power plant. Ideal for universities, polytechnics, and research labs, it empowers learners to explore solar photovoltaic technology—from basic principles to advanced MPPT algorithms. The system features structured experiments across three modules: PV characteristics, standalone system integration, and MPPT research. Using modular plug-in units and artificial sunlight, it enables detailed study of panel behavior, wiring, and environmental effects. A complete solution for technical training, academic projects, and solar innovation.

Know More
Learning Module

Solar PV Grid Tied Training System

The Solar PV Grid Tied Training System is a versatile experimental setup designed to simulate a real-world grid-connected solar power plant. Perfect for hands-on learning in universities and technical institutes, it also serves as a robust platform for advanced research in solar PV integration, power quality analysis, and smart grid studies. Featuring a built-in virtual grid, it is ideal for locations where direct grid connections are not permitted, allowing seamless experimentation and research in a fully controlled environment.

Know More
Learning Module

Solar PV Emulator

Ecosense’s Solar PV Emulator is a versatile experimental tool designed to replicate the characteristics of solar panels, enabling users to simulate various environmental conditions without relying on actual sunlight. Ideal for educational institutions and research labs, it offers a controlled environment to study and analyze solar photovoltaic systems. The emulator can visualize up to four peaks of shading, allowing detailed examination of partial shading effects on solar panel performance.

Know More
Learning Module

Solar Thermal Training System

The Solar Thermal Training System is a compact, modular platform designed to replicate real-world flat plate solar water heating systems. Engineered for both educational and research applications, it facilitates hands-on experimentation with key thermal performance parameters such as efficiency, overall heat loss coefficient (UL), and heat removal factor (FR). The system's adaptability allows users to conduct experiments under varying conditions, including different wind speeds, fluid temperatures, flow rates, and irradiation levels, making it an invaluable tool for comprehensive thermal analysis.

Know More
Learning Module

Solar Concentrator Training System

The Solar Concentrator Training System is a compact and modular experimental platform designed to replicate the functionality of a solar parabolic trough collector-based water heating system. Comprising parabolic reflectors, absorber tubes, a sun tracking mechanism, piping, storage tanks, and a control panel, this system facilitates hands-on learning and in-depth research in solar thermal technologies. Its adaptability to various working fluids, absorber materials, insulation thicknesses, and storage configurations makes it an invaluable tool for both educational institutions and research laboratories aiming to explore heat transfer dynamics and system efficiency under diverse conditions.

Know More
Learning Module

ETC Characterization System

The ETC Characterization System is a compact, closed-loop Evacuated Tube Collector (ETC) setup designed for in-depth thermal analysis of various fluids. Utilizing an artificial sunlight source, this system enables controlled, indoor experimentation independent of natural climate conditions. Ideal for educational institutions, it also serves as a robust platform for advanced research on heat transfer, system efficiency, and the performance of different working fluids, including nanofluids.

Know More
Learning Module

Thermal Energy Storage System

The Solar Thermal Energy Storage System is a versatile experimental platform designed to facilitate in-depth studies of thermal energy storage using Phase Change Materials (PCMs). Engineered for both educational and research applications, this system enables users to explore the dynamics of heat transfer, storage, and retrieval under various operating conditions. Its modular design allows for experimentation with different PCMs, flow rates, and temperatures, making it an invaluable tool for understanding and optimizing thermal energy storage solutions.

Know More
Learning Module

Wind Energy Training System

The Wind Energy Training System is a compact, hands-on laboratory platform designed to introduce students and professionals to the fundamentals of wind power generation and standalone wind energy systems. It replicates the core workings of an actual wind turbine plant in a controlled laboratory environment — perfect for classroom learning, skill development programs, technical training, and renewable energy research. This system facilitates hands-on learning and research by allowing users to study the operational characteristics of wind turbines, understand energy conversion processes, and explore system integration aspects.

Know More
Learning Module

Wind Turbine Emulator

The Wind Turbine Emulator is a real-time, hardware-in-the-loop (HIL) platform that replicates the mechanical and electrical behavior of a wind turbine under controlled laboratory conditions. It eliminates dependence on natural wind while allowing students and researchers to study turbine dynamics, power conversion, MPPT algorithms, and grid interaction with high repeatability and safety.With advanced control architecture and support for external algorithm integration (MATLAB, Simulink, FPGA, etc.), the system facilitates real-time experimentation, deep system modeling, and algorithm validation, all within the safety of a laboratory.

Know More
Learning Module

Wind Turbine Emulator-PV Emulator-Fuel Cell Microgrid

The Wind Turbine Emulator-Solar PV Emulator-Fuel Cell Microgrid is a tri-source, fully integrated hybrid energy training platform that combines Wind Turbine Emulator (WTE), PV Emulator (PVE), and PEM Fuel Cell systems to simulate a real-world microgrid environment. It offers users the ability to model, control, and analyze complex interactions among renewable sources and storage units, with applications in smart grid control, distributed generation, and hybrid energy management. This advanced lab-scale system enables real-time source coordination, dynamic load response, and grid interfacing, making it ideal for universities, technical research labs, and training centers focused on sustainable energy systems. The platform supports integration with battery banks, supercapacitors, and programmable loads, while also offering a fully open-source control software environment for custom experimentation.

Know More
Learning Module

Wind Turbine Emulator-PV Emulator Microgrid

The Wind Turbine Emulator and PV Emulator (WTE-PVE) Microgrid is a comprehensive, lab-scale microgrid system developed for training, experimentation, and research in sustainable power systems. It simulates both wind and solar power generation and allows users to understand, design, and test hybrid energy systems under realistic environmental and load conditions. The system comprises two primary subsystems: the Wind Turbine Emulator (WTE) and the PV Emulator (PVE). Each operates independently but can also be integrated at a common DC link to form a combined hybrid system. The platform supports bidirectional power flow with energy storage, programmable loads, and inverter-based AC output, making it suitable for microgrid studies, control algorithm development, and grid synchronization.

Know More
Learning Module

Wind Turbine Emulator - Fuel Cell Microgrid

The WTE-FC Microgrid is an advanced hybrid energy training and research platform that integrates a Wind Turbine Emulator (WTE) with a Proton Exchange Membrane (PEM) Fuel Cell system. Designed to explore power continuity and backup energy strategies in microgrids, this system enables users to simulate and analyze the interplay between intermittent renewable generation and steady hydrogen-based power supply. The platform mirrors real-world microgrid operation, where wind energy serves as the primary variable source and hydrogen fuel cells provide reliability during low-wind scenarios. This system is ideal for developing skills in microgrid design, renewable backup strategies, energy security analysis, and grid-independent operation.

Know More
Learning Module

Fuel Cell Training System

The Fuel Cell Training System is a fully integrated, modular, and scalable experimental setup designed to bridge the gap between fuel cell theory and practical application. Built for engineering institutes, research labs, and skill development centers, this lab platform allows users to explore everything from fundamental electrochemistry to advanced energy system integration. With a real PEM fuel cell stack at its core, and support components such as a charge controller, battery bank, inverter, and active load modules, the lab facilitates a wide range of experiments, from V-I curve plotting to hybrid system design. Whether you are a student learning fuel cell basics or a researcher developing advanced MPPT algorithms, the Fuel Cell Training System delivers both flexibility and depth.

Know More
Learning Module

Fuel Cell Drive Train

The Fuel Cell Drive Train is a modular platform designed to simulate and study the complete powertrain of a hydrogen fuel cell hybrid electric vehicle (FCEV). It provides a real-world learning experience on how hydrogen fuel is converted into electric propulsion, integrating advanced control electronics, power conversion units, and electromechanical systems. This lab-scale setup includes a PEM Fuel Cell, bidirectional power converters, battery bank, ultracapacitor module, and a complete motor drive system comprising a Permanent Magnet Synchronous Motor (PMSM) acting as the traction motor, coupled to a loading PMDC motor and a resistive load bank for rad condition simulation.

Know More
Learning Module

Ocean Wave Energy Simulator

The Ocean Wave Energy Simulator by Ecosense is a complete lab-scale system that replicates the behavior of Oscillating Water Column (OWC) wave energy plants. It uses real ocean wave data to simulate irregular sea states and emulates the full energy conversion process using a DC motor to replicate turbine torque and a Permanent Magnet Synchronous Generator (PMSG) for electrical generation. With LabVIEW-based control, real-time monitoring, and grid-connected operation, it serves as a robust platform for education, research, and control strategy development in marine renewable energy.

Know More
Learning Module

Integrated Platform for Carbon Capture and Utilization

Integrated Platform for Carbon Capture and Utilization is a comprehensive, hands-on educational system designed to bring real-world Carbon Capture, Utilization, and Storage (CCUS) processes into the classroom and research environment. Tailored for engineering and science institutions, this lab-scale setup simulates the complete CCUS cycle—from carbon emission simulation and adsorption to desorption and final mineralization into stable compounds like CaCO₃. With integrated sensors, a PID-based control system, and an IoT-enabled data acquisition unit, this platform is suitable for both foundational learning and advanced experimentation.

Know More
Learning Module

RE-Based Smart Energy Management System

The RE-Based Smart Energy Management System by Ecosense is a comprehensive educational platform designed to demonstrate and analyze renewable energy generation and management. It integrates solar and wind energy sources, enabling users to explore various configurations such as standalone, grid-connected, and hybrid systems. The system offers hands-on experience in energy production, storage, and smart load management, making it an invaluable tool for academic instruction and applied research in sustainable energy technologies.

Know More
Learning Module

Three/Single Phase Programmable RLC Load

The Programmable Three-Phase/Single Phase RLC Load System is a hardware-based programmable load bank that uses real resistors, inductors, and capacitors to simulate a wide range of electrical loading scenarios. Controlled via a LabVIEW-based graphical user interface (GUI), the system allows users to independently set resistive (R), inductive (L), and capacitive (C) load levels by entering reference power values, offering precise and dynamic control of active and reactive loads. With built-in power measurement, harmonic analysis, and multi-point communication this platform is ideal for power systems education, energy audits, and three-phase power quality research.

Know More
Learning Module

Programmable DC Load

The Programmable DC Load System is a real, hardware-based resistive load bank that allows precise, software-controlled application of electrical loads to DC power sources such as fuel cells, batteries, solar PV modules, and DC power supplies. Unlike electronic or transistor-based loads, this system uses actual resistors as load elements, making it a perfect match for scenarios where users need to observe true thermal, electrical, and physical behavior under resistive loading conditions. Featuring a LabVIEW-based graphical user interface (GUI), the system offers both manual toggle and automated control modes, real-time parameter monitoring, data logging, and live graph plotting. It's a highly effective tool for engineering education, renewable energy research, and system testing.

Know More
Learning Module

Zonal DC Microgrid

The Zonal DC Microgrid is a next generation educational and research platform that replicates a 2 zone, distributed DC power system capable of simulating real world fault handling, isolation, and resilience strategies. Installed at IIT Roorkee, this system is equipped with multiple DC buses, adjustable voltage levels, and independent load/source configurations in each zone. The platform allows students and researchers to generate faults intentionally in one zone and observe how the other zone remains unaffected, paving the way for smart grid and resilient infrastructure training.

Know More
Learning Module

Universal Datalogger

The Universal Data Logger System is a highly adaptable platform designed to acquire, display, and log real-time data from multiple sensor types including temperature (RTDs, thermocouples), pressure, and flow sensors. Ideal for multidisciplinary labs, the system supports a wide range of input types and allows students and researchers to perform comprehensive measurements and data analysis across various energy, fluid, and thermal systems. Its modular design and LabVIEW-based GUI make it perfect for educational institutions and industrial training centers that require accurate, flexible, and scalable data acquisition systems.

Know More
Learning Module

Grid-Connected Battery Energy Storage System

The Grid-Connected BESS is a fully functional battery energy storage lab system that simulates real-time grid interaction, renewable buffering, and demand-side energy control. It enables experimentation on peak shaving, frequency response, and bidirectional energy exchange. The system combines a battery bank, inverter, smart controller, and energy monitoring software to form a modular and programmable BESS ideal for both educational and pilot-scale smart grid implementations.

Know More
Learning Module

Multiple Input Multiple Output (MIMO) Converter

The MIMO DC-DC Converter is a robust and intelligent energy management system capable of handling multiple energy sources and storage systems simultaneously. Developed for use in research-oriented microgrid and hybrid system labs, the converter features multiple isolated input/output ports, each programmable for source or sink operation. This platform allows researchers and students to study MPPT, power balancing, energy routing, and converter control strategies between combinations of solar PV, batteries, fuel cells, and supercapacitors.

Know More
Learning Module

VERIFICATION OF STRESS HYPOTHESIS – ECS234

This apparatus is designed to generate multi-axial loads on test samples made of ductile metals such as steel, copper, brass, and aluminium. It is used for verification of the Rankine and Tresca yield criteria and representation of stresses and strains in Mohr’s circle.

Know More
Learning Module

DEFORMATION OF BARS UNDER BENDING OR TORSION (ECS140)

This apparatus is used to study deformation of bars under bending and torsion. It allows bending tests and torsion tests to determine modulus of elasticity and shear modulus for various materials such as aluminium, steel, brass, and copper.

Know More
Learning Module

EQUILIBRIUM OF MOMENTS ON A TWO-ARM LEVER (ECS085)

The Equilibrium of Moments on a Two-Arm Lever Apparatus (ECS085) demonstrates the fundamental law of the lever and the concept of moments in static equilibrium. It enables students to understand how force and distance influence rotational balance, making it an essential experiment for the study of statics and basic mechanics principles.

Know More
Learning Module

FORCES IN A CRANE JIB (ECS188)

This apparatus allows the determination of forces in a planar crane jib system. It enables the study of tensile and compressive bar forces, vectorial handling of forces, and the analysis of various jib configurations.

Know More
Learning Module

TIMING BALL (ECS596)

The Timing Ball apparatus is used for the measurement of total time of flight during projectile motion and to determine acceleration due to gravity ‘g’. It includes Bluetooth connectivity for data measurement and digital display.

Know More

Why Choose the Programmable Loads

  • Essential tool for modern power and energy laboratories:The Programmable Loads Lab is a critical test and learning platform for understanding how electrical sources behave under controlled loading conditions. It allows students and researchers to apply repeatable, programmable loads to power systems and observe real-time electrical performance.
  • Supports renewable, power electronics, and microgrid labs: Programmable loads are indispensable when testing solar PV systems, wind turbines, fuel cells, batteries, inverters, EV chargers, and microgrids. This lab complements and strengthens experiments across multiple renewable and smart-grid platforms.
  • Realistic load emulation for industry-relevant testing: The system can emulate resistive, inductive, capacitive, and dynamic load profiles—helping learners study how real-world loads impact voltage stability, current draw, power quality, and system efficiency.
  • Fully programmable and repeatable experiments: Unlike fixed load banks, programmable loads allow precise control over voltage, current, power, and load profiles. This enables repeatable experiments, accurate performance comparison, and research-grade validation.
  • Ideal for teaching, testing, and research: The lab supports undergraduate teaching, postgraduate research, product validation, and algorithm testing. It is widely used in power electronics labs, EV research, inverter testing, and energy management studies.
  • Safe, compact, and lab-friendly design: Designed for academic environments, the system includes built-in protections, intuitive interfaces, and safe operating ranges—making it suitable for frequent student use.

How the Ecosense Programmable Loads Works

The Ecosense Programmable Loads Lab is designed to apply controlled electrical loading to a wide range of power sources and systems. Instead of using fixed resistors or passive load banks, this lab enables users to dynamically define how much current, voltage, or power a system must deliver—closely replicating real operating conditions.

At its core, the lab acts as an intelligent electronic load, capable of operating in multiple modes depending on the learning or research objective.

1. Load Connection to Power Sources: The programmable load can be connected to:

  • Solar PV systems and inverters
  • Wind turbine outputs or emulators
  • Fuel cell systems
  • Battery energy storage systems
  • EV chargers and DC fast chargers
  • Grid-tied and standalone inverters
  • Microgrid and hybrid energy systems

Once connected, the load draws power in a controlled and measurable manner, allowing accurate performance evaluation of the source.

2. Multiple Load Operating Modes: The system supports multiple programmable modes to simulate different real-world conditions:

  • Constant Current (CC) Mode – Maintains a fixed current draw regardless of voltage variation
  • Constant Voltage (CV) Mode – Regulates voltage while allowing current to vary
  • Constant Power (CP) Mode – Draws a fixed power level, ideal for inverter and battery testing
  • Constant Resistance (CR) Mode – Simulates resistive loads with adjustable resistance

Students can instantly switch between modes to study how different load types affect system behavior.

3. Dynamic and Programmable Load Profiles : One of the key strengths of the lab is its ability to run dynamic load profiles, such as:

  • Step changes in load
  • Ramp-up and ramp-down profiles
  • Cyclic or pulsed loads
  • Time-based load scheduling

These profiles are essential for studying transient response, stability, control-loop performance, and protection behavior of power electronic systems.

4. Real-Time Measurement and Monitoring: The system continuously measures and displays:

  • Voltage
  • Current
  • Power
  • Energy consumption
  • Load response over time

Data can be logged for further analysis, enabling students to plot performance curves, compare efficiency under different loads, and validate theoretical calculations.

5. Integration with Control and Research Platforms: The Programmable Loads Lab can be integrated with:

  • Energy Management Systems (EMS)
  • Microgrid control platforms
  • Converter and inverter control experiments
  • Algorithm development and validation

Researchers can synchronize load profiles with control algorithms to test system robustness, fault handling, and optimization strategies.

Applications and Learning Outcomes

Using the Programmable Loads Lab, learners can:

  • Study source behavior under variable loads
  • Test inverter and converter performance
  • Validate battery charge/discharge characteristics
  • Analyze power quality under dynamic loading
  • Perform efficiency and thermal studies
  • Simulate real consumer and industrial load patterns

This makes the lab a core utility platform across renewable energy, EV, power electronics, and smart grid education.

Frequently Asked Questions

A Programmable Loads are used to apply controlled electrical loads to power sources such as solar inverters, batteries, fuel cells, and EV chargers. It helps students and researchers test performance, stability, efficiency, and protection behavior under different loading conditions.

The lab supports Constant Current (CC), Constant Voltage (CV), Constant Power (CP), and Constant Resistance (CR) modes. These modes allow simulation of different real-world electrical load behaviors.

Yes. The lab is commonly used with solar PV systems, wind energy systems, fuel cells, battery storage, and microgrids to study how renewable sources respond to changing load demands.

Absolutely. The programmable and repeatable nature of the load makes it ideal for postgraduate research, converter validation, inverter testing, algorithm development, and performance benchmarking.

The lab is ideal for engineering colleges, universities, R&D centers, EV research labs, and training institutes offering programs in electrical engineering, power electronics, renewable energy, and smart grids.