Our Products

EV Drive Line Simulator

The EV Drive Line Simulator (EDLS) by Ecosense is a state-of-the-art educational and experimental platform designed to provide real-time simulation, analysis, and control of electric vehicle (EV) drivetrain systems. With integrated traction motors, dynamometer-based loading, and open-source software, EDLS allows students and researchers to deeply engage with every aspect of EV propulsion, control, and regenerative braking. It serves as a complete, lab-scale replica of an actual EV drivetrain, enabling practical learning, algorithm development, and system performance evaluation.

Know More

Battery Cycler with Data Analytics

The Battery Cycler with Data Analytics (BCDA) by Ecosense is a comprehensive educational and experimental platform designed to study and analyze electric vehicle (EV) battery systems. Combining real EV components with open-source software and a built-in environmental chamber, this system provides users with the tools to conduct hands-on experiments, simulate real-world conditions, and perform in-depth data analytics. BCDA is ideal for institutions and research labs aiming to deliver practical skills and foster innovation in battery technology and electric mobility.

Know More

BMS Training and Research System

The BMS Training and Research System (BMSTS) by Ecosense is a modular and scalable educational platform designed for advanced experimentation and real-time simulation of Battery Management Systems (BMS). Tailored for EV applications, this system provides a hands-on learning experience in SoC estimation, cell balancing, thermal management, and safety logic using actual EV components. With an integrated environmental chamber and open-source control software, BMSTS enables students and researchers to design, test, and validate custom BMS algorithms in a safe and controlled environment.

Know More

Modular and Adaptive EVSE

The Modular and Adaptive Electric Vehicle Supply Equipment (MAEVSE) by Ecosense is a fully integrated educational and research platform that simulates the complete EV charging ecosystem. Designed for universities, polytechnics, and technical institutions, MAEVSE combines real EV hardware with open-source control software, enabling students and researchers to explore every aspect of EV charging technology—from onboard AC charging to off-board DC fast charging—through hands-on experimentation, data analysis, and control algorithm development. This lab-grade platform is engineered to bridge the gap between theoretical knowledge and real-world EV infrastructure.

Know More

Solar PV Training and Research System

The Solar PV Training and Research System is a compact, hands-on educational platform that replicates a real-world standalone solar power plant. Ideal for universities, polytechnics, and research labs, it empowers learners to explore solar photovoltaic technology—from basic principles to advanced MPPT algorithms. The system features structured experiments across three modules: PV characteristics, standalone system integration, and MPPT research. Using modular plug-in units and artificial sunlight, it enables detailed study of panel behavior, wiring, and environmental effects. A complete solution for technical training, academic projects, and solar innovation.

Know More

Solar PV Grid Tied Training System

The Solar PV Grid Tied Training System is a versatile experimental setup designed to simulate a real-world grid-connected solar power plant. Perfect for hands-on learning in universities and technical institutes, it also serves as a robust platform for advanced research in solar PV integration, power quality analysis, and smart grid studies. Featuring a built-in virtual grid, it is ideal for locations where direct grid connections are not permitted, allowing seamless experimentation and research in a fully controlled environment.

Know More

Solar PV Emulator

Ecosense’s Solar PV Emulator is a versatile experimental tool designed to replicate the characteristics of solar panels, enabling users to simulate various environmental conditions without relying on actual sunlight. Ideal for educational institutions and research labs, it offers a controlled environment to study and analyze solar photovoltaic systems. The emulator can visualize up to four peaks of shading, allowing detailed examination of partial shading effects on solar panel performance.

Know More

Solar Thermal Training System

The Solar Thermal Training System is a compact, modular platform designed to replicate real-world flat plate solar water heating systems. Engineered for both educational and research applications, it facilitates hands-on experimentation with key thermal performance parameters such as efficiency, overall heat loss coefficient (UL), and heat removal factor (FR). The system's adaptability allows users to conduct experiments under varying conditions, including different wind speeds, fluid temperatures, flow rates, and irradiation levels, making it an invaluable tool for comprehensive thermal analysis.

Know More

Solar Concentrator Training System

The Solar Concentrator Training System is a compact and modular experimental platform designed to replicate the functionality of a solar parabolic trough collector-based water heating system. Comprising parabolic reflectors, absorber tubes, a sun tracking mechanism, piping, storage tanks, and a control panel, this system facilitates hands-on learning and in-depth research in solar thermal technologies. Its adaptability to various working fluids, absorber materials, insulation thicknesses, and storage configurations makes it an invaluable tool for both educational institutions and research laboratories aiming to explore heat transfer dynamics and system efficiency under diverse conditions.

Know More

ETC Characterization System

The ETC Characterization System is a compact, closed-loop Evacuated Tube Collector (ETC) setup designed for in-depth thermal analysis of various fluids. Utilizing an artificial sunlight source, this system enables controlled, indoor experimentation independent of natural climate conditions. Ideal for educational institutions, it also serves as a robust platform for advanced research on heat transfer, system efficiency, and the performance of different working fluids, including nanofluids.

Know More

Thermal Energy Storage System

The Solar Thermal Energy Storage System is a versatile experimental platform designed to facilitate in-depth studies of thermal energy storage using Phase Change Materials (PCMs). Engineered for both educational and research applications, this system enables users to explore the dynamics of heat transfer, storage, and retrieval under various operating conditions. Its modular design allows for experimentation with different PCMs, flow rates, and temperatures, making it an invaluable tool for understanding and optimizing thermal energy storage solutions.

Know More

Wind Energy Training System

The Wind Energy Training System by Ecosense is a comprehensive educational platform designed to simulate and analyze wind energy generation in a controlled laboratory environment. This system facilitates hands-on learning and research by allowing users to study the operational characteristics of wind turbines, understand energy conversion processes, and explore system integration aspects. With its modular design and advanced instrumentation, it serves as an invaluable tool for both academic instruction and applied research in renewable energy technologies.

Know More

Wind Turbine Emulator

The Wind Turbine Emulator from Ecosense is a powerful, real-time, hardware-in-the-loop (HIL) platform that emulates the dynamic mechanical and electrical characteristics of an actual wind turbine—without the need for natural wind. Designed for universities, technical institutes, and R&D labs, this emulator enables students and researchers to study turbine control strategies, energy conversion, MPPT, grid interaction, and smart grid compatibility. With advanced control architecture and support for external algorithm integration (MATLAB, Simulink, FPGA, etc.), the system facilitates real-time experimentation, deep system modeling, and algorithm validation, all within the safety of a laboratory.

Know More

Wind Turbine Emulator-PV Emulator-Fuel Cell Microgrid

The Wind Turbine Emulator-Solar PV Emulator-Fuel Cell Microgrid is a tri-source, fully integrated hybrid energy training platform that combines Wind Turbine Emulator (WTE), PV Emulator (PVE), and PEM Fuel Cell systems to simulate a real-world microgrid environment. It offers users the ability to model, control, and analyze complex interactions among renewable sources and storage units, with applications in smart grid control, distributed generation, and hybrid energy management. This advanced lab-scale system enables real-time source coordination, dynamic load response, and grid interfacing, making it ideal for universities, technical research labs, and training centers focused on sustainable energy systems. The platform supports integration with battery banks, supercapacitors, and programmable loads, while also offering a fully open-source control software environment for custom experimentation.

Know More

Wind Turbine Emulator-PV Emulator Microgrid

The Wind Turbine Emulator and PV Emulator (WTE-PVE) Microgrid is a comprehensive, lab-scale microgrid system developed for training, experimentation, and research in sustainable power systems. It simulates both wind and solar power generation and allows users to understand, design, and test hybrid energy systems under realistic environmental and load conditions. The system comprises two primary subsystems: the Wind Turbine Emulator (WTE) and the PV Emulator (PVE). Each operates independently but can also be integrated at a common DC link to form a combined hybrid system. The platform supports bidirectional power flow with energy storage, programmable loads, and inverter-based AC output, making it suitable for microgrid studies, control algorithm development, and grid synchronization.

Know More

Wind Turbine Emulator - Fuel Cell Microgrid

The WTE-FC Microgrid is an advanced hybrid energy training and research platform that integrates a Wind Turbine Emulator (WTE) with a Proton Exchange Membrane (PEM) Fuel Cell system. Designed to explore power continuity and backup energy strategies in microgrids, this system enables users to simulate and analyze the interplay between intermittent renewable generation and steady hydrogen-based power supply. The platform mirrors real-world microgrid operation, where wind energy serves as the primary variable source and hydrogen fuel cells provide reliability during low-wind scenarios. This system is ideal for developing skills in microgrid design, renewable backup strategies, energy security analysis, and grid-independent operation.

Know More

RE-Based Smart Energy Management System

The RE-Based Smart Energy Management System by Ecosense is a comprehensive educational platform designed to demonstrate and analyze renewable energy generation and management. It integrates solar and wind energy sources, enabling users to explore various configurations such as standalone, grid-connected, and hybrid systems. The system offers hands-on experience in energy production, storage, and smart load management, making it an invaluable tool for academic instruction and applied research in sustainable energy technologies.

Know More

Fuel Cell Training System

The Ecosense Fuel Cell Lab is a fully integrated, modular, and scalable experimental setup designed to bridge the gap between fuel cell theory and practical application. Built for engineering institutes, research labs, and skill development centers, this lab platform allows users to explore everything from fundamental electrochemistry to advanced energy system integration. With a real PEM fuel cell stack at its core, and support components such as a charge controller, battery bank, inverter, and active load modules, the lab facilitates a wide range of experiments, from V-I curve plotting to hybrid system design. Whether you are a student learning fuel cell basics or a researcher developing advanced MPPT algorithms, the Fuel Cell Training System delivers both flexibility and depth.

Know More

Fuel Cell Drive Train

The Fuel Cell Drive Train is a modular platform designed to simulate and study the complete powertrain of a hydrogen fuel cell hybrid electric vehicle (FCEV). It provides a real-world learning experience on how hydrogen fuel is converted into electric propulsion, integrating advanced control electronics, power conversion units, and electromechanical systems. This lab-scale setup includes a PEM Fuel Cell, bidirectional power converters, battery bank, ultracapacitor module, and a complete motor drive system comprising a Permanent Magnet Synchronous Motor (PMSM) acting as the traction motor, coupled to a loading PMDC motor and a resistive load bank for rad condition simulation.

Know More

Green Hydrogen Generation and Storage System

The Green Hydrogen Generation and Storage System by Ecosense is a modular, reconfigurable educational and research-grade platform that replicates the complete hydrogen value chain—from renewable power harvesting to hydrogen generation and safe storage. Designed for engineering institutions, R&D labs, and clean energy centers, this system serves as a real-world replica of decentralized hydrogen production hubs. It enables comparative experimentation with leading electrolyzer technologies (PEM, AEM, Alkaline) and supports multiple input sources including photovoltaic arrays, PV emulators, and AC grid supply. With the flexibility to switch technologies and test variables under controlled lab conditions, this platform prepares students and researchers to design, operate, and optimize hydrogen infrastructure in alignment with future energy systems.

Know More

Green Hydrogen Generation, Storage and Utilization System

The Green Hydrogen Generation, Storage and Utilization System is a customizable experimental and research platform designed to facilitate the comprehensive study of the entire green hydrogen cycle. It enables users to explore every stage—from renewable energy integration (via Solar PV arrays or PV emulator systems) and water purification, to hydrogen generation using a choice of electrolyzers (PEM, AEM, or Alkaline), followed by safe storage and final utilization through a PEM fuel cell. This system offers a complete hands-on learning environment, making it ideal for academic institutions, research laboratories, and technology training centers focused on advancing hydrogen energy technologies with a strong focus on safety, control, and performance analysis.

Know More

Green Hydrogen Microgrid

The Green Hydrogen Microgrid by Ecosense is a cutting-edge educational and experimental platform designed to demonstrate the generation, storage, and utilization of hydrogen energy integrated within a smart microgrid system. This system enables students and researchers to explore real-time renewable energy integration, green hydrogen production via electrolysis, and electricity generation using fuel cells. It provides a holistic learning experience in advanced energy systems, making it an ideal tool for institutions aiming to lead in hydrogen technology and sustainability.

Know More

Three/Single Phase Programmable RLC Load

The Programmable Three-Phase/Single Phase RLC Load System is a hardware-based programmable load bank that uses real resistors, inductors, and capacitors to simulate a wide range of electrical loading scenarios. Controlled via a LabVIEW-based graphical user interface (GUI), the system allows users to independently set resistive (R), inductive (L), and capacitive (C) load levels by entering reference power values, offering precise and dynamic control of active and reactive loads. With built-in power measurement, harmonic analysis, and multi-point communication this platform is ideal for power systems education, energy audits, and three-phase power quality research.

Know More

Programmable DC Load

The Programmable DC Load System is a real, hardware-based resistive load bank that allows precise, software-controlled application of electrical loads to DC power sources such as fuel cells, batteries, solar PV modules, and DC power supplies. Unlike electronic or transistor-based loads, this system uses actual resistors as load elements, making it a perfect match for scenarios where users need to observe true thermal, electrical, and physical behavior under resistive loading conditions. Featuring a LabVIEW-based graphical user interface (GUI), the system offers both manual toggle and automated control modes, real-time parameter monitoring, data logging, and live graph plotting. It's a highly effective tool for engineering education, renewable energy research, and system testing.

Know More

Ocean Wave Energy Simulator

The Ocean Wave Energy Simulator by Ecosense is a complete lab-scale system that replicates the behavior of Oscillating Water Column (OWC) wave energy plants. It uses real ocean wave data to simulate irregular sea states and emulates the full energy conversion process using a DC motor to replicate turbine torque and a Permanent Magnet Synchronous Generator (PMSG) for electrical generation. With LabVIEW-based control, real-time monitoring, and grid-connected operation, it serves as a robust platform for education, research, and control strategy development in marine renewable energy.

Know More

Zonal DC Microgrid

The Zonal DC Microgrid is a next generation educational and research platform that replicates a 2 zone, distributed DC power system capable of simulating real world fault handling, isolation, and resilience strategies. Installed at IIT Roorkee, this system is equipped with multiple DC buses, adjustable voltage levels, and independent load/source configurations in each zone. The platform allows students and researchers to generate faults intentionally in one zone and observe how the other zone remains unaffected, paving the way for smart grid and resilient infrastructure training.

Know More

Universal Datalogger

The Universal Data Logger System is a highly adaptable platform designed to acquire, display, and log real-time data from multiple sensor types including temperature (RTDs, thermocouples), pressure, and flow sensors. Ideal for multidisciplinary labs, the system supports a wide range of input types and allows students and researchers to perform comprehensive measurements and data analysis across various energy, fluid, and thermal systems. Its modular design and LabVIEW-based GUI make it perfect for educational institutions and industrial training centers that require accurate, flexible, and scalable data acquisition systems.

Know More

Grid-Connected Battery Energy Storage System

The Grid-Connected BESS is a fully functional battery energy storage lab system that simulates real-time grid interaction, renewable buffering, and demand-side energy control. It enables experimentation on peak shaving, frequency response, and bidirectional energy exchange. The system combines a battery bank, inverter, smart controller, and energy monitoring software to form a modular and programmable BESS ideal for both educational and pilot-scale smart grid implementations.

Know More

Multiple Input Multiple Output (MIMO) Converter

The MIMO DC-DC Converter is a robust and intelligent energy management system capable of handling multiple energy sources and storage systems simultaneously. Developed for use in research-oriented microgrid and hybrid system labs, the converter features multiple isolated input/output ports, each programmable for source or sink operation. This platform allows researchers and students to study MPPT, power balancing, energy routing, and converter control strategies between combinations of solar PV, batteries, fuel cells, and supercapacitors.

Know More